Testing Aerobic Capacity

This page of resources is designed to support the delivery of workshops and labs on aerobic capacity testing and the completion of related lab reports and essays.

Study Questions

A series of questions to consider in relation to practical sessions and prior to writing related lab reports:

  • Define the following terms: maximal oxygen consumption, ventilatory threshold, lactate threshold.
  • Identify and explain the concept of contraindications when supervising a test of aerobic capacity.
  • Describe the ways in which the measurement of maximal oxygen consumption can be useful when working with an athlete.
  • When might it be inadvisable to undertake a maximal test of aerobic capacity and what alternatives are available?
  • Discuss the differences between various measures of aerobic capacity and which are more or less valid.
  • Explain the criteria for determining whether VO2max was attained during a graded exercise test.
  • What are the potential effects of different protocols on outcome measures (e.g. VO2max, LT etc).
  • Discuss the range of methods used to analyse and assess LT once data has been collected in an incremental test.
  • What is Critical Power and how can it be used to evaluate an athlete's potential? (see Jones & Vanhatalo, 2017). What are the potential criticisms?

Related content on this website

How to write a lab report

Testing Aerobic Capacity Workshop Support

Key Chapters

Bourdon, P. (2012) Blood Lactate Transition Thresholds: Concepts and Controversies. In: Tanner, R.& Gore, C.J., ed, Physiological Tests for Elite Athletes (2nd Ed), Australian Sports Commission. Champaign IL: Human Kinetics: 77-102.[amazon]

Jones, A.M. and DiMenna, F.J. (2011) Cardiovascular Assessment and Aerobic Training Prescription. In Cardinale,M., Newton,R., Nosaka,K. Strength and Conditioning: Biological Principles and Practical Applications. Oxford; Wiley-Blackwell [google books][companion website]

Jones, A.M., Vanhatalo, A.T. and Doust, J.H. (2009) Aerobic Exercise Performance. In Eston, R. & Reilly, T. (Ed.) (2009). Kinanthropometry and exercise physiology laboratory manual. Vol. 2: Physiology. (3rd Ed). London, Routledge [chapter 10: Aerobic exercise performance]

Morris, D. (2012) Lactate Threshold. In Miller, T. (Ed.)(2012) NSCA's Guide to Tests and Assessments. Champaign, IL, Human Kinetics: 125-145

Winter, E., Jones, A.M., Davison, R.C.R., Bromley, P.D., Mercer, T.H. (Eds.) (2007). Sport and exercise physiology testing guidelines. Vol 2: Exercise and Clinical Testing. British Association of Sport and Exercise Sciences guide: London, Routledge.[google books][full text]

Recommended Journal Articles

Faude, O., Kindermann, W., Meyer, T (2009) Lactate Threshold Concepts: How Valid are They? Sports Medicine Vol.39, No.6, 469-490 [abstract][full text]

Ferguson, B. S., Rogatzki, M. J., Goodwin, M. L., Kane, D. A., Rightmire, Z., & Gladden, L. B. (2018). Lactate metabolism: historical context, prior misinterpretations, and current understanding. European Journal of Applied Physiology, 1-38. https://link.springer.com/article/10.1007/s00421-017-3795-6

Haugen, T., Paulsen, G., Seiler, S., & Sandbakk, Ø. (2018). New Records in Human Power. International Journal of Sports Physiology and Performance, 13(6), 678-686. https://journals.humankinetics.com/doi/full/10.1123/ijspp.2017-0441

Jamnick, N. A., Botella, J., Pyne, D. B., & Bishop, D. J. (2018). Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PloS one, 13(7), e0199794. https://doi.org/10.1371/journal.pone.0199794

Jones, A. M. (2006) The physiology of the world record holder for the women's marathon. International Journal of Sports Science and Coaching Vol.1, 101-116 [full text]

Joyner, M. J., Ruiz, J. R., & Lucia, A. (2011). The two-hour marathon: who and when?. Journal of Applied Physiology, 110(1), 275-277. https://doi.org/10.1152/japplphysiol.00563.2010

Midgley, A.W., McNaughton, L.R., Polman, R., & Marchant, D. (2007) Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Medicine, Vol.37, No.12,1019-1028. [abstract]

Representative blood lactate curve with 14 LTs calculated from one GXT and one participant.From Jamnick, N. A., Botella, J., Pyne, D. B., & Bishop, D. J. (2018) https://doi.org/10.1371/journal.pone.0199794

Further Reading

Achten, J. and Jeukendrup, A. E. (2003) Heart rate monitoring: applications and limitations. Sports Medicine. Vol. 33, No. 7: 517–538. [Online] [full text]

Astrand, P-O (1972) Work Tests with the bicycle ergometer. Varberg, Sweden: Monark Crescent AB [full text]

Bacon, A. P., Carter, R. E., Ogle, E. A., & Joyner, M. J. (2013). VO2ma Trainability and High Intensity Interval Training in Humans: A Meta-Analysis. PloS One, 8(9), e73182.[full text]

Bangsbo,J. Iaia, F.M. and Krustrup, P. (2008) The Yo-Yo Intermittent Recovery Test A Useful Tool for Evaluation of Physical Performance in Intermittent Sports Sports Med 38 (1); 37-51 [full text]

Bassett, D. R., & Howley, E.T.(2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc., 32(1): 70–84 [full text]

Belcher, C. P. and Pemberton, C. L. (2012) The Use of the Blood Lactate Curve to Develop Training Intensity Guidelines for the Sports of Track and Field and Cross-Country. International Journal of Exercise Science. Vol. 5, No. 2: 148–159. [fulltext]

Beltrami, F. G., Froyd, C., Mauger, A. R., Metcalfe, A. J., Marino, F. and Noakes, T. D. (2012) Conventional testing methods produce submaximal values of maximum oxygen consumption. British Journal of Sports Medicine. Vol. 46, No. 1: 23–29. [Online]. Available from: doi:10.1136/bjsports-2011-090306[full text]

Bentley, D J., Newell, J. & Bishop, D. (2007) Incremental Exercise Test Design and Analysis: Implications for Performance Diagnostics in Endurance Athletes Sports Medicine, Vol 37, No.7, 575-586 [abstract]

Billat V., Dalmay F., Antonini M.T., et al. (1994) A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise. Eur J Appl Physiol 69: 196-202 [full text]

Billat, V. L., Sirvent, P., Py, G., Koralsztein, J. P., & Mercier, J. (2003). The concept of maximal lactate steady state. Sports Medicine, 33(6), 407-426.

Borg, G. A., & Noble, B. J. (1974). Perceived exertion. Exercise and Sport Sciences Reviews, 2(1), 131-154. [full text]

Burnley, M. and Jones, A.M. (2007) Oxygen uptake kinetics as a determinant of sports performance, European Journal of Sport Science, Vol. 7, No. 2, 63 – 79 [full text]

Brink-Elfegoun, T., Kaijser, L., Gustafsson, T. and Ekblom, B. (2007) Maximal oxygen uptake is not limited by a central nervous system governor. Journal of Applied Physiology. Vol. 102, No. 2: 781–786. [Online]. Available from: doi:10.1152/japplphysiol.00566.2006 [full text]

Bruce, RA, Kusumi, F, and Hosmer, D. (1973) Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 85: 546-562[abstract]

Bosquet, L., Leger, L. & Legros, P. (2002) Methods to determine aerobic endurance Sports Med 32(11): 675-700 [full text]

Cairns, S. P. (2006). Lactic acid and exercise performance. Sports Medicine, 36(4), 279-291.

Carey, D.G., Raymond,R.L., Duoos B.A. (2002) Intra- and inter-observer reliability in selection of the heart rate deflection point during incremental exercise: comparison to a computer-generated deflection point Journal of Sports Science and Medicine 1, 115-121 [full text]

Carey, D. (2002) Assessment of the accuracy of the Conconi test in determining gas analysis anaerobic threshold. Journal of Strength and Conditioning Research 16(4) 641-644 [abstract]

Castagna, C., Impellizzeri,F.M., Rampinini, E., D’Ottavio,S. Manzi, V. (2008)The Yo—Yo intermittent recovery test in basketball players Journal of Science and Medicine in Sport 11, 202-208.

Chalmers, S., Esterman, A., Eston, R., & Norton, K. (2015). Standardization of the Dmax method for calculating the second lactate threshold. International Journal of Sports Physiology and Performance, 10(7), 921-926. https://doi.org/10.1123/ijspp.2014-0537

Christie, C. J.-A. and Ingram, B. (2001) Impact of training status on maximal oxygen uptake criteria attainment during running. South African Journal of Sports Medicine. Vol. 21, No. 1: 19–22. [full text]

Cooper, K.H. (1968) A means of assessing maximal oxygen intake. JAMA Vol. 203, 201-204 [abstract]

Conconi, F., Ferrari, M., Ziglio, P., Droghetti, P. and Codeca, L. (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology: Respiratory,Environmental and Exercise Physiology 52: 869- 873.

Conconi, F., Grazzi, G., Casoni, I., Guglielmini, C., Borsetto, C., Ballarin, E., Mazzoni, G., Patracchini, M., Manfredini, F.(1996)The Conconi Test: Methodology After 12 Years of Application Int J Sports Med 17(7): 509-519 [abstract]

Davis, J.A. (1985) Anaerobic threshold: review of the concept and directions for future research. Med. Sci. Sports Exerc. Vol. 17, No. 1, pp. 6-18

Edwards, A. M., Clark, N. and Macfadyen, A. M. (2003) Lactate And Ventilatory Thresholds Reflect The Training Status Of Professional Soccer Players Where Maximum Aerobic Power Is Unchanged. Journal of Sports Science and Medicine. Vol. 2: 23–29. [full text]

Ekblom, B. (2009) Counterpoint: maximal oxygen uptake is not limited by a central nervous system governor. Journal of Applied Physiology. Vol. 106, No. 1: 339–41; discussion 341–2. [Online]. Available from: doi:10.1152/japplphysiol.90844.2008a [full text]

Eston, R. & Reilly, T. (Ed.) (2009). Kinanthropometry and exercise physiology laboratory manual. Vol. 2: Physiology. (3rd Ed). London, Routledge [chapter 10: Aerobic exercise performance]

Fenstermaker, K.L., Plowman, S.A. and Looney, M.A. (1992) Validation of the Rockport Fitness Walking Test in females 65 years and older. Res Q Exerc Sport. Vol.63, No.3, 322-7 [abstract]

Gamelin FX, Coquart J, Ferrari N, et al (2006). Prediction of one hour running performance using constant duration tests. Journal of Strength and Conditioning Research 20(4) 735-739 [full text]

Gladden,L.B. (2004) Lactate metabolism: a new paradigm for the third millennium. The Journal of Physiology, 558, 5-30.[full text]

Goodwin, M.L., Harris, J.E., Hernández,A., Gladden, L.B. (2007) Blood Lactate Measurements and Analysis during Exercise: A Guide for Clinicians J Diabetes Sci Technol. 1(4): 558–569. [full text]

Guellich, A. and Seiler, S. (2010) Lactate profile changes in relation to training characteristics in junior elite cyclists. International Journal of Sports Physiology and Performance. Vol. 5, No. 3: 316–327. [Online] [full text]

Harnish, C. R., Swensen, T. C. and Pate. R. R. (2001) Methods for estimating the maximal lactate steady state in trained cyclists. Med.Sci. Sports Exerc., Vol. 33, No. 6, 1052–1055.[full text]

Harvey, J.A.(2011) A Review: Analyzing How Oxygen Uptake Kinetics Limit Exercise Performance. JEPonline 14(3):67-73 [full text]

Hellsten, Y., & Nyberg, M. (2015). Cardiovascular adaptations to exercise training. Comprehensive Physiology.6(1), 1-32.[abstract]

Heyward, V.H. (2010) Advanced fitness assessment and exercise prescription (6th Ed.) Champaign IL: Human Kinetics.[google books] [companion website][Step Test Protocols][Treadmill Protocols][Cycle Ergometer Protocols][lab briefing]

Hoffman,J (2006) Norms for Fitness, Performance and Health.Champaign IL: Human Kinetics [google books]

Howley,E.T., Bassett,D.R., Welch,H.G. (1995) Criteria for maximal oxygen uptake:review and commentary.Medecine & Science in Sports and Exercise 27(9)1292-1301 [full text]

Kalinski, M.I., Norkowski,H., Kerner,M.S. and Tkaczuk, W.G. (2002) Anaerobic Power Characteristics of Elite Athletes in National Level Team-Sport Games European Journal of Sport Science, 2(3) [full text]

Keir, D. A., Paterson, D. H., Kowalchuk, J. M., & Murias, J. M. (2018). Using ramp-incremental V̇ O2 responses for constant-intensity exercise selection. Applied Physiology, Nutrition, and Metabolism, 43(9), 882-892.

Jacobs, R. A., Rasmussen, P., Siebenmann, C., Díaz, V., Gassmann, M., Pesta, D., ... & Lundby, C. (2011). Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. Journal of Applied Physiology, 111(5), 1422-1430. https://doi.org/10.1152/japplphysiol.00625.2011

Janssen, P. (2001) Lactate Threshold Training. Champaign, Il: Human Kinetics [google books]

Jones, A. M. and Doust, J. H. (1996) A 1 % treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sport Sciences. Vol. 14: 321–327. [full text] (see image below)

Jones, A.M. & Doust, J.H. (1998) The validity of the lactate minimum test for determination of the maximal lactate steady state Medicine & Science in Sports & Exercise Vol.30, No.8, 1304-1313 [abstract]

Jones, A.M. and Burnley, M. (2009) Oxygen uptake kinetics: an underappreciated determinant of exercise performance. Int J Sports Physiol Perform 4(4), 524-32 [abstract]

Jones, A. & Carter, H. (2000) The Effect of Endurance Training on Parameters of Aerobic Fitness Sports Med 29(6), 373-386

Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., & Poole, D. C. (2010). Critical power: implications for determination of VO2ma and exercise tolerance. Med Sci Sports Exerc, 42(10), 1876-90.

Jones, A. M., & Vanhatalo, A. (2017). The ‘critical power’concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Medicine, 47(1), 65-78.

Joyner, M. J. (2017). Physiological limits to endurance exercise performance: influence of sex. The Journal of Physiology, 595(9), 2949-2954. https://doi.org/10.1113/JP272268

Kline, G.M., Porcari, J.P., Hintermeister, R., Freedson, P.S., Ward, A., McCarron, F., Ross, J. and Rippe, J.M. (1987) Estimation of a VO2ma from a one-mile track walk, gender, age, and body weight. Med.Sci.Sport Exerc. Vol.19, No.3, 253-259 [full text]

Lundby, C., & Robach, P. (2015). Performance enhancement: what are the physiological limits?. Physiology, 30(4), 282-292. https://doi.org/10.1152/physiol.00052.2014

Maud, P.J. & Foster C. (Eds)(2006) Physiological Assessment of Human Fitness (2nd Ed.). Champaign, IL, Human Kinetics [google books]

Mauger, A. R., & Sculthorpe, N. (2012). A new VO2max protocol allowing self-pacing in maximal incremental exercise. Br J Sports Med, 46(1), 59-63. http://dx.doi.org/10.1136/bjsports-2011-090006

Mcardle, W.D., Katch, F.I., Pechar, G.S., et al (1972) Reliability and interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women Med. Sci. Sports Exerc. 4, 182-186 [abstract]

Mcgehee, J.C., Tanner, C.J., & Houmard, J.A. (2005) A comparison of methods for estimating the lactate threshold.Journal of Strength and Conditioning Research 19(3), 553–558 [full text]

Midgley, A. W., McNaughton, L. R. and Jones, A. M. (2007) Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Medicine. Vol. 37, No. 10: 857–880. [abstract]

Morrow, J.R., Jackson, A.W., Disch, J.G., Mood, D.P. (2010) Measurement and evaluation in human performance (4th ed) Champaign, IL : Human Kinetics [google books]

Newell, J., Higgins, D., Madden, N., Cruickshank, J., Einbeck, J., McMillan, K., & McDonald, R. (2007). Software for calculating blood lactate endurance markers. Journal of Sports Sciences, 25(12), 1403-1409.[full text]

Noakes, T. D. and Marino, F. E. (2009) Point: maximal oxygen uptake is limited by a central nervous system governor. Journal of Applied Physiology. Vol. 106, No. 1: 338–9; discussion 341. [Online]. Available from: doi:10.1152/japplphysiol.90844.2008 [full text]

Noonan, V. and Dean, E. (2000) Submaximal Exercise Testing: Clinical Application and Interpretation Physical Therapy Vol. 80, No. 8 . 782-807 [full text]

Norton,K., Norton, L., & Sadgrove, D. (2010) Position statement on physical activity and exercise intensity terminology Journal of Science and Medicine in Sport 13: 496–502 [full text]

Pyne, D. B., Lee, H. and Swanwick. K.M. (2001) Monitoring the lactate threshold in world-ranked swimmers. Med. Sci. Sports Exerc.,33(2) 291–297 [full text].

Ramsbottom, R., Brewer, J., Williams, C. (1988) A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med Vol. 22, 141-144 [abstract]

Reiman, M.P. & Manske, R.C. (2009) Functional Testing in Human Performance. Champaign, Il: Human Kinetics [google books]

Sandbakk, Ø., Holmberg, H. C., Leirdal, S., & Ettema, G. (2011). The physiology of world‐class sprint skiers. Scandinavian Journal of Medicine & Science in Sports, 21(6), e9-e16. https://doi.org/10.1111/j.1600-0838.2010.01117.x

Scharhag-Rosenberger, F., Meyer, T., Walitzek, S. and W. Kindermann. (2009) Time Course of Changes in Endurance Capacity: A 1-yr Training Study. Med. Sci. Sports Exerc., Vol. 41, No. 5, 1130–1137, [full text]

Svedahl, K., and MacIntosh, B.R. (2003). Anaerobic threshold: The concept and methods of measurement. Can. J. Appl. Physiol. Vol.28, No.2, 299-323. [full text]

Vachon, J. A., Bassett, D.R., and Clarke, S. (1999) Validity of the heart rate deflection point as a predictor of lactate threshold during running. J. Appl. Physiol. 87(1): 452-459 [full text]

Yeh, M.P., Gardner, R.M., Adams, T.D., Yanowitz, F.G., Crapo, R.O. (1983) "Anaerobic threshold": problems of determination and validation. J Appl Physiol. Vol. 55, No.4,1178-86

Further Links

A non-exercise method for predicting VO2ma

A wikipedia article on the Multi-Stage Fitness Test

The Yo-Yo Intermittent Recovery Test Levels from www.topendsports.com

Cardiopulmonary Exercise Testing [click here]

Dalleck, L.C. and Kravitz, L. (n.d.) Optimize Aerobic Endurance [online] - a primer for initial understanding of VT, LT, AT

How to determine Anaerobic Threshold - An article from www.sports-fitness-advisor.com

Lacate Threshold Analysis software [click here] - see Newell et al (2007) above for more on this

Aerobic Tests on Scienceforsport.com website