Velocity-Based Training
Velocity-Based Training is the use of equipment such as a Linear Position Transducer to measure the speed at which an exercise is completed. This can be used to test or monitor training in a number of ways.
Jovanović, & Flanagan (2014) outlined five practical uses of VBT as follows:
Comparing individuals using load/velocity profile and monitoring changes over time
Estimating 1RM from sub-maximal loads (see McBurnie et al, 2019; Jidovtseff et al, 2011)
Estimating daily readiness or daily 1RM
Using velocity monitoring and exertion/velocity profile to control fatigue and exertion (see "velocity stops" below; see Hughes et al, 2018)
Using velocity to prescribe exercise load (see Banyard et al, 2019; Dorrell et al, 2020)
This page contains a list of research and resources related to the use of VBT in Strength & Conditioning Practice.
Key Research
Instant feedback can improve performance (Weakley et al, 2019; Nagata et al, 2018; Randall et al, 2011)
Velocity "stops" can be used to terminate the set when velocity drops below 20% of the targeted velocity zone (see Dorrell et al, 2020; Pareja‐Blanco et al, 2017)
Load-velocity relationships vary between genders (Torrejón et al, 2019)
The load-velocity relationship is a particularly robust relationship in the bench press (Balsalobre-Fernández et al, 2018; González-Badillo, & Sánchez-Medina, 2010; Bosquet et al, 2010; Torrejón et al, 2019)
There is a strong relationship between load and velocity in the pull-up (Muñoz-López et al, 2017)
The load-velocity relationship is not as clear in the back squat (Askow et al, 2019; Banyard et al, 2017; Carroll et al, 2017; Hughes et al, 2018; Martínez-Cava et al, 2019; Sánchez-Medina et al, 2017)
The load-velocity relationship in the deadlift is also less clear (Lake et al, 2017; Ruf et al, 2018).
Use of load-velocity relationships in the deadlift may produce predicted 1RMs that are less than the actual 1RM (Lake et al, 2017)
The minimal velocity threshold is the term often used for the mean velocity at 1RM (Jovanović, & Flanagan, 2014; Lake et al, 2017)
The minimal velocity threshold will vary across exercises (Helms et al, 2017; see this table from scienceforsport's VBT page)
0.23 m/s back squat; 0.10 m/s touch/pause/go bench press; 0.15 m/s deadlift (Helms et al, 2017)
0.14 m/s touch & go bench press (Ormsbee et al, 2019)
0.15 m/s bench press (Sanchez-Medina et al, 2010)
0.30 m/s back squat (Izquierdo et al 2006)
Two-point load assessments have been shown to be valid and reliable for predicting 1RM (García-Ramos, Haff et al, 2018; García-Ramos, Pérez-Castilla, & Jaric, 2018)
If exercise is prescribed from a velocity-based threshold the neuromuscular, metabolic and perceptual responses are the same irrespective of recent training history (Weakley, McLaren et al, 2020)
Key reading
Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., Garcia-Ramos, A. (2020) Velocity-Based Training: From Theory to Application. Strength and Conditioning Journal doi: 10.1519/SSC.0000000000000560
Key Chapter
Mann, B. (2021) Velocity-Based Training. In I. Jeffreys & J. Moody (Eds.), Strength and Conditioning for Sports Performance (2nd Ed.). London: Routledge.
Recent Publications
Ramos, A. G. (2023). Resistance training intensity prescription methods based on lifting velocity monitoring. International Journal of Sports Medicine. https://doi.org/10.1055/a-2158-3848
Recommended Reading
Appleby, B. B., Banyard, H., Cormie, P., Cormack, S. J., & Newton, R. U. (2018). Validity and Reliability of Methods to Determine Barbell Displacement in Heavy Back Squats: Implications for Velocity-Based Training. Journal of strength and conditioning research. doi: 10.1519/JSC.0000000000002803
Askow, A. T., Merrigan, J. J., Neddo, J. M., Oliver, J. M., Stone, J. D., Jagim, A. R., & Jones, M. T. (2019). Effect of strength on velocity and power during back squat exercise in resistance-trained men and women. The Journal of Strength & Conditioning Research, 33(1), 1-7. doi: 10.1519/JSC.0000000000002968
Balsalobre-Fernández, C., Marchante, D., Muñoz-López, M., & Jiménez, S. L. (2018). Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. Journal of sports sciences, 36(1), 64-70. https://doi.org/10.1080/02640414.2017.1280610
Balsalobre-Fernández, C., Cardiel-García, M., & Jiménez, S. L. (2019). Bilateral and unilateral load-velocity profiling in a machine-based, single-joint, lower body exercise. PloS one, 14(9). https://doi.org/10.1371/journal.pone.0222632
Balsalobre-Fernández, C., & Torres-Ronda, L. (2021). The implementation of velocity-based training paradigm for team sports: framework, technologies, practical recommendations and challenges. Sports, 9(4), 47. https://doi.org/10.3390/sports9040047
Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and validity of the load–velocity relationship to predict the 1RM back squat. The Journal of Strength & Conditioning Research, 31(7), 1897-1904. doi: 10.1519/JSC.0000000000001657
Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the effects of velocity-based training methods and traditional 1RM-percent-based training prescription on acute kinetic and kinematic variables. International journal of sports physiology and performance, 14(2), 246-255. https://doi.org/10.1123/ijspp.2018-0147
Behm, D. G., & Sale, D. G. (1993). Intended rather than actual movement velocity determines velocity-specific training response. Journal of Applied Physiology, 74(1), 359-368. https://doi.org/10.1152/jappl.1993.74.1.359
Bosquet, L., Porta-Benache, J., & Blais, J. (2010). Validity of a commercial linear encoder to estimate bench press 1 RM from the force-velocity relationship. Journal of sports science & medicine, 9(3), 459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761713/
Carroll, K. M., Sato, K., Bazyler, C. D., Triplett, N. T., & Stone, M. H. (2017). Increases in variation of barbell kinematics are observed with increasing intensity in a graded back squat test. Sports, 5(3), 51. https://doi.org/10.3390/sports5030051
Chapman, D., Newton, M., Sacco, P., & Nosaka, K. (2006). Greater muscle damage induced by fast versus slow velocity eccentric exercise. International Journal of Sports Medicine, 27(08), 591-598. https://doi.org/10.1055/s-2005-865920
Cormie, P., McGuigan, M. R., & Newton, R. U. (2011). Developing Maximal Neuromuscular Power: Part II Training considerations for improving maximal power production. Sports Med, 41(2), 125-146. [full text]
Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. The Journal of Strength & Conditioning Research, 34(1), 46-53. doi: 10.1519/JSC.0000000000003089
Fahs, C. A., Blumkaitis, J. C., & Rossow, L. M. (2019). Factors related to average concentric velocity of four barbell exercises at various loads. The Journal of Strength & Conditioning Research, 33(3), 597-605. doi: 10.1519/JSC.0000000000003043
Fahs, C. A., Rossow, L. M., & Zourdos, M. C. (2018). Analysis of factors related to back squat concentric velocity. The Journal of Strength & Conditioning Research, 32(9), 2435-2441. doi: 10.1519/JSC.0000000000002295
García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Haff, G. G. (2018). Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability?. The Journal of Strength & Conditioning Research, 32(5), 1273-1279. doi: 10.1519/JSC.0000000000001998
García-Ramos, A., Jaric, S., Padial, P., & Feriche, B. (2016). Force–velocity relationship of upper body muscles: traditional versus ballistic bench press. Journal of applied biomechanics, 32(2), 178-185.
García-Ramos, A., Haff, G. G., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., Balsalobre-Fernández, C., & Jaric, S. (2018). Feasibility of the 2-point method for determining the 1-repetition maximum in the bench press exercise. International Journal of Sports Physiology and Performance, 13(4), 474-481. https://doi.org/10.1123/ijspp.2017-0374
García-Ramos, A., Pérez-Castilla, A., & Jaric, S. (2018). Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps. Sports biomechanics, 1-16. https://doi.org/10.1080/14763141.2018.1545044
González-Badillo, J. J., Sánchez-Medina, L., Ribas-Serna, J., & Rodríguez-Rosell, D. (2022). Toward a New Paradigm in Resistance Training by Means of Velocity Monitoring: A Critical and Challenging Narrative. Sports Medicine-Open, 8(1), 1-24. https://doi.org/10.1186/s40798-022-00513-z
González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. International journal of sports medicine, 31(05), 347-352. DOI: 10.1055/s-0030-1248333
González-Badillo, J. J., Marques, M. C., & Sánchez-Medina, L. (2011). The importance of movement velocity as a measure to control resistance training intensity. Journal of human kinetics, 29, 15. https://dx.doi.org/10.2478%2Fv10078-011-0053-6
González-Badillo, J. J., Pareja-Blanco, F., Rodríguez-Rosell, D., Abad-Herencia, J. L., del Ojo-López, J. J., & Sánchez-Medina, L. (2015). Effects of velocity-based resistance training on young soccer players of different ages. The Journal of Strength & Conditioning Research, 29(5), 1329-1338. https://doi.org/10.1519/jsc.0000000000000764
Helms, E. R., Storey, A., Cross, M. R., Brown, S. R., Lenetsky, S., Ramsay, H., ... & Zourdos, M. C. (2017). RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. The Journal of Strength & Conditioning Research, 31(2), 292-297. doi: 10.1519/JSC.0000000000001517
Hirsch, S. M., & Frost, D. M. (2019). Considerations for Velocity-Based Training: The Instruction to Move “As Fast As Possible” Is Less Effective Than a Target Velocity. The Journal of Strength & Conditioning Research. doi: 10.1519/JSC.0000000000003233
Hughes, L. J., Banyard, H. G., Dempsey, A. R., Peiffer, J. J., & Scott, B. R. (2019). Using load-velocity relationships to quantify training-induced fatigue. The Journal of Strength & Conditioning Research, 33(3), 762-773. doi: 10.1519/JSC.0000000000003007
Izquierdo, M., González-Badillo, J. J., Häkkinen, K., Ibanez, J., Kraemer, W. J., Altadill, A., ... & Gorostiaga, E. (2006). Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. International journal of sports medicine, 27(09), 718-724. DOI: 10.1055/s-2005-872825
Jandačka, D., & Beremlijski, P. (2011). Determination of strength exercise intensities based on the load-power-velocity relationship. Journal of Human Kinetics, 28, 33. https://dx.doi.org/10.2478%2Fv10078-011-0020-2
Jidovtseff, B., Harris, N. K., Crielaard, J. M., & Cronin, J. B. (2011). Using the load-velocity relationship for 1RM prediction. The Journal of Strength & Conditioning Research, 25(1), 267-270. doi: 10.1519/JSC.0b013e3181b62c5f
Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity based strength training. J Aust Strength Cond, 22(2), 58-69. [www]
Lake, J., Naworynsky, D., Duncan, F., & Jackson, M. (2017). Comparison of different minimal velocity thresholds to establish deadlift one repetition maximum. Sports, 5(3), 70. https://doi.org/10.3390/sports5030070
Mann, J. B., Ivey, P. A., & Sayers, S. P. (2015). Velocity-based training in football. Strength & Conditioning Journal, 37(6), 52-57. doi: 10.1519/SSC.0000000000000177
Martínez-Cava, A., Morán-Navarro, R., Sánchez-Medina, L., González-Badillo, J. J., & Pallarés, J. G. (2019). Velocity-and power-load relationships in the half, parallel and full back squat. Journal of sports sciences, 37(10), 1088-1096. https://doi.org/10.1080/02640414.2018.1544187
McBurnie, A. J., Allen, K. P., Garry, M., Martin, M., Jones, P. A., Comfort, P., & McMahon, J. J. (2019). The Benefits and Limitations of Predicting One Repetition Maximum Using the Load-Velocity Relationship. Strength & Conditioning Journal, 41(6), 28-40. doi: 10.1519/SSC.0000000000000496
McGrath, G. A., Flanagan, E. P., O’Donovan, P., Collins, D. J., & Kenny, I. C. (2018). Velocity based training: validity of monitoring devices to assess mean concentric velocity in the bench press exercise. J. Austr. Strength Cond, 26, 23-30.
Muñoz-López, M., Marchante, D., Cano-Ruiz, M. A., Chicharro, J. L., & Balsalobre-Fernández, C. (2017). Load-, force-, and power-velocity relationships in the prone pull-up exercise. International Journal of Sports Physiology and Performance, 12(9), 1249-1255. https://doi.org/10.1123/ijspp.2016-0657
Nagata, A., Doma, K., Yamashita, D., Hasegawa, H., & Mori, S. (2018). The Effect of Augmented Feedback Type and Frequency on Velocity-Based Training-Induced Adaptation and Retention. Journal of strength and conditioning research. doi: 10.1519/JSC.0000000000002514
Ormsbee, M. J., Carzoli, J. P., Klemp, A., Allman, B. R., Zourdos, M. C., Kim, J. S., & Panton, L. B. (2019). Efficacy of the repetitions in reserve-based rating of perceived exertion for the bench press in experienced and novice benchers. The Journal of Strength & Conditioning Research, 33(2), 337-345. doi: 10.1519/JSC.0000000000001901
Pareja‐Blanco, F., Rodríguez‐Rosell, D., Sánchez‐Medina, L., Sanchis‐Moysi, J., Dorado, C., Mora‐Custodio, R., ... & González‐Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian journal of medicine & science in sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678
Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. International journal of sports medicine, 35(11), 916-924. https://doi.org/10.1055/s-0033-1363985
Pérez-Castilla, A., García-Ramos, A., Padial, P., Morales-Artacho, A. J., & Feriche, B. (2019). Load-Velocity Relationship in Variations of the Half-Squat Exercise: Influence of Execution Technique. The Journal of Strength & Conditioning Research. DOI: 10.1519/jsc.0000000000002072
Ramos, A. G. (2023). Resistance training intensity prescription methods based on lifting velocity monitoring. International Journal of Sports Medicine. https://doi.org/10.1055/a-2158-3848
Randell, A. D., Cronin, J. B., Keogh, J. W., Gill, N. D., & Pedersen, M. C. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. The Journal of Strength & Conditioning Research, 25(1), 87-93. doi: 10.1519/JSC.0b013e3181fee634
Ruf, L., Chéry, C., & Taylor, K. L. (2018). Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. The Journal of Strength & Conditioning Research, 32(3), 681-689. doi: 10.1519/JSC.0000000000002369
Sanchez-Medina, L., Perez, C. E., & Gonzalez-Badillo, J. J. (2010). Importance of the propulsive phase in strength assessment. International journal of sports medicine, 31(02), 123-129. DOI: 10.1055/s-0029-1242815
Sanchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine & Science in Sports & Exercise, 43(9), 1725-1734. doi: 10.1249/MSS.0b013e318213f880
Sánchez-Medina, L., González-Badillo, J. J., Perez, C. E., & Pallarés, J. G. (2014). Velocity-and power-load relationships of the bench pull vs. bench press exercises. International journal of sports medicine, 35(03), 209-216. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0033-1351252
Sánchez-Medina, L., Pallarés, J. G., Pérez, C. E., Morán-Navarro, R., & González-Badillo, J. J. (2017). Estimation of relative load from bar velocity in the full back squat exercise. Sports Medicine International Open, 1(02), E80-E88. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0043-102933
Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training monitoring for resistance exercise: theory and applications. Sports Medicine, 46(5), 687-698. https://doi.org/10.1007/s40279-015-0454-0
Stahl, C. A., Lindsay, K. G., Mann, J. B., Hunt, M., & Dawes, J. J. (2020). A comparison of lower body power characteristics between collegiate athletes from different competition levels. International Journal of Exercise Science, 13(6), 470. https://www.ncbi.nlm.nih.gov/pubmed/32509133
Suchomel, T. J., Comfort, P., & Lake, J. P. (2017). Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength & Conditioning Journal, 39(1), 10-20. doi: 10.1519/SSC.0000000000000275
Thompson, S. W., Rogerson, D., Dorrell, H. F., Ruddock, A., & Barnes, A. (2020). The Reliability and Validity of Current Technologies for Measuring Barbell Velocity in the Free-Weight Back Squat and Power Clean. Sports, 8(7), 94. https://doi.org/10.3390/sports8070094
Thompson, S. W., Olusoga, P., Rogerson, D., Ruddock, A., & Barnes, A. (2022). “Is it a slow day or a go day?”: The perceptions and applications of velocity-based training within elite strength and conditioning. International Journal of Sports Science & Coaching, 17479541221099641. https://doi.org/10.1177%2F17479541221099641
Torrejón, A., Balsalobre-Fernández, C., Haff, G. G., & García-Ramos, A. (2019). The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports biomechanics, 18(3), 245-255. https://doi.org/10.1080/14763141.2018.1433872
Turner, A. N., Comfort, P., McMahon, J., Bishop, C., Chavda, S., Read, P., ... & Lake, J. (2020). Developing powerful athletes, part 1: Mechanical underpinnings. Strength & Conditioning Journal, 42(3), 30-39. https://doi.org/10.1519/ssc.0000000000000543 [NSCA website]
Turner, A. N., Comfort, P., McMahon, J., Bishop, C., Chavda, S., Read, P., ... & Lake, J. (2021). Developing powerful athletes part 2: practical applications. Strength & Conditioning Journal, 43(1), 23-31. https://doi.org/10.1519/ssc.0000000000000544 [NSCA website]
Varela-Olalla, D., del Campo-Vecino, J., Leyton-Román, M., Pérez-Castilla, A., & Balsalobre-Fernández, C. (2019). Rating of perceived exertion and velocity loss as variables for controlling the level of effort in the bench press exercise. Sports biomechanics, 1-15. https://doi.org/10.1080/14763141.2018.1433872
Weakley, J. J., Wilson, K. M., Till, K., Read, D. B., Darrall-Jones, J., Roe, G. A., ... & Jones, B. (2019). Visual Feedback Attenuates Mean Concentric Barbell Velocity Loss and Improves Motivation, Competitiveness, and Perceived Workload in Male Adolescent Athletes. The Journal of Strength & Conditioning Research, 33(9), 2420-2425. doi: 10.1519/JSC.0000000000002133
Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., ... & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. Journal of Sports Sciences, 38(5), 477-485. https://doi.org/10.1080/02640414.2019.1706831
Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., & Garcia-Ramos, A. (2021). Velocity-based training: From theory to application. Strength & Conditioning Journal, 43(2), 31-49. doi: 10.1519/SSC.0000000000000560
Weakley, J., Morrison, M., García-Ramos, A., Johnston, R., James, L., & Cole, M. H. (2021). The validity and reliability of commercially available resistance training monitoring devices: a systematic review. Sports medicine, 51, 443-502.
Further Resources
McDonald, R. (2018) An Applied Approach to using the Force-Velocity Curve in Beach Volleyball https://www.trainwithpush.com/blog/an-applied-approach-to-using-the-force-velocity-curve-in-beach-volleyball
McGuigan, M. (2019). Testing and Evaluation of Strength and Power. Routledge. (p46-49)
Walker, O. (2018) Velocity-Based Training https://www.scienceforsport.com/velocity-based-training/
A series of articles reflecting on a roundtable conversation held online in 2015 - https://complementarytraining.net/recent-articles-on-velocity-based-training/
A free VBT mini-course - https://www.outputsports.com/events/vbt-mini-course-with-chris-tombs
Related Resources on this website
Main Strength & Conditioning Page