Velocity-Based Training

Velocity-Based Training is the use of equipment such as a Linear Position Transducer to measure the speed at which an exercise is completed. This can be used to test or monitor training in a number of ways.

Jovanović, & Flanagan (2014) outlined five practical uses of VBT as follows:

  • Comparing individuals using load/velocity profile and monitoring changes over time

  • Estimating 1RM from sub-maximal loads (see McBurnie et al, 2019; Jidovtseff et al, 2011)

  • Estimating daily readiness or daily 1RM

  • Using velocity monitoring and exertion/velocity profile to control fatigue and exertion (see "velocity stops" below; see Hughes et al, 2018)

  • Using velocity to prescribe exercise load (see Banyard et al, 2019; Dorrell et al, 2020)

This page contains a list of research and resources related to the use of VBT in Strength & Conditioning Practice.

Key Research

  • Instant feedback can improve performance (Weakley et al, 2019; Nagata et al, 2018; Randall et al, 2011)

  • Velocity "stops" can be used to terminate the set when velocity drops below 20% of the targeted velocity zone (see Dorrell et al, 2020; Pareja‐Blanco et al, 2017)

  • Load-velocity relationships vary between genders (Torrejón et al, 2019)

  • The load-velocity relationship is a particularly robust relationship in the bench press (Balsalobre-Fernández et al, 2018; González-Badillo, & Sánchez-Medina, 2010; Bosquet et al, 2010; Torrejón et al, 2019)

  • There is a strong relationship between load and velocity in the pull-up (Muñoz-López et al, 2017)

  • The load-velocity relationship is not as clear in the back squat (Askow et al, 2019; Banyard et al, 2017; Carroll et al, 2017; Hughes et al, 2018; Martínez-Cava et al, 2019; Sánchez-Medina et al, 2017)

  • The load-velocity relationship in the deadlift is also less clear (Lake et al, 2017; Ruf et al, 2018).

  • Use of load-velocity relationships in the deadlift may produce predicted 1RMs that are less than the actual 1RM (Lake et al, 2017)

  • The minimal velocity threshold is the term often used for the mean velocity at 1RM (Jovanović, & Flanagan, 2014; Lake et al, 2017)

  • The minimal velocity threshold will vary across exercises (Helms et al, 2017; see this table from scienceforsport's VBT page)

    • 0.23 m/s back squat; 0.10 m/s touch/pause/go bench press; 0.15 m/s deadlift (Helms et al, 2017)

    • 0.14 m/s touch & go bench press (Ormsbee et al, 2019)

    • 0.15 m/s bench press (Sanchez-Medina et al, 2010)

    • 0.30 m/s back squat (Izquierdo et al 2006)

  • Two-point load assessments have been shown to be valid and reliable for predicting 1RM (García-Ramos, Haff et al, 2018; García-Ramos, Pérez-Castilla, & Jaric, 2018)

  • If exercise is prescribed from a velocity-based threshold the neuromuscular, metabolic and perceptual responses are the same irrespective of recent training history (Weakley, McLaren et al, 2020)

Key reading

Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., Garcia-Ramos, A. (2020) Velocity-Based Training: From Theory to Application. Strength and Conditioning Journal doi: 10.1519/SSC.0000000000000560

Image from: Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., Garcia-Ramos, A. (2020) Velocity-Based Training: From Theory to Application Strength and Conditioning Journal doi: 10.1519/SSC.0000000000000560

Recommended Reading

Appleby, B. B., Banyard, H., Cormie, P., Cormack, S. J., & Newton, R. U. (2018). Validity and Reliability of Methods to Determine Barbell Displacement in Heavy Back Squats: Implications for Velocity-Based Training. Journal of strength and conditioning research. doi: 10.1519/JSC.0000000000002803

Askow, A. T., Merrigan, J. J., Neddo, J. M., Oliver, J. M., Stone, J. D., Jagim, A. R., & Jones, M. T. (2019). Effect of strength on velocity and power during back squat exercise in resistance-trained men and women. The Journal of Strength & Conditioning Research, 33(1), 1-7. doi: 10.1519/JSC.0000000000002968

Balsalobre-Fernández, C., Marchante, D., Muñoz-López, M., & Jiménez, S. L. (2018). Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. Journal of sports sciences, 36(1), 64-70. https://doi.org/10.1080/02640414.2017.1280610

Balsalobre-Fernández, C., Cardiel-García, M., & Jiménez, S. L. (2019). Bilateral and unilateral load-velocity profiling in a machine-based, single-joint, lower body exercise. PloS one, 14(9). https://doi.org/10.1371/journal.pone.0222632

Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and validity of the load–velocity relationship to predict the 1RM back squat. The Journal of Strength & Conditioning Research, 31(7), 1897-1904. doi: 10.1519/JSC.0000000000001657

Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the effects of velocity-based training methods and traditional 1RM-percent-based training prescription on acute kinetic and kinematic variables. International journal of sports physiology and performance, 14(2), 246-255. https://doi.org/10.1123/ijspp.2018-0147

Behm, D. G., & Sale, D. G. (1993). Intended rather than actual movement velocity determines velocity-specific training response. Journal of Applied Physiology, 74(1), 359-368. https://doi.org/10.1152/jappl.1993.74.1.359

Bosquet, L., Porta-Benache, J., & Blais, J. (2010). Validity of a commercial linear encoder to estimate bench press 1 RM from the force-velocity relationship. Journal of sports science & medicine, 9(3), 459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761713/

Carroll, K. M., Sato, K., Bazyler, C. D., Triplett, N. T., & Stone, M. H. (2017). Increases in variation of barbell kinematics are observed with increasing intensity in a graded back squat test. Sports, 5(3), 51. https://doi.org/10.3390/sports5030051

Cormie, P., McGuigan, M. R., & Newton, R. U. (2011). Developing Maximal Neuromuscular Power: Part II Training considerations for improving maximal power production. Sports Med, 41(2), 125-146. [full text]

Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. The Journal of Strength & Conditioning Research, 34(1), 46-53. doi: 10.1519/JSC.0000000000003089

Fahs, C. A., Blumkaitis, J. C., & Rossow, L. M. (2019). Factors related to average concentric velocity of four barbell exercises at various loads. The Journal of Strength & Conditioning Research, 33(3), 597-605. doi: 10.1519/JSC.0000000000003043

Fahs, C. A., Rossow, L. M., & Zourdos, M. C. (2018). Analysis of factors related to back squat concentric velocity. The Journal of Strength & Conditioning Research, 32(9), 2435-2441. doi: 10.1519/JSC.0000000000002295

García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Haff, G. G. (2018). Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability?. The Journal of Strength & Conditioning Research, 32(5), 1273-1279. doi: 10.1519/JSC.0000000000001998

García-Ramos, A., Jaric, S., Padial, P., & Feriche, B. (2016). Force–velocity relationship of upper body muscles: traditional versus ballistic bench press. Journal of applied biomechanics, 32(2), 178-185.

García-Ramos, A., Haff, G. G., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., Balsalobre-Fernández, C., & Jaric, S. (2018). Feasibility of the 2-point method for determining the 1-repetition maximum in the bench press exercise. International Journal of Sports Physiology and Performance, 13(4), 474-481. https://doi.org/10.1123/ijspp.2017-0374

García-Ramos, A., Pérez-Castilla, A., & Jaric, S. (2018). Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps. Sports biomechanics, 1-16. https://doi.org/10.1080/14763141.2018.1545044

González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. International journal of sports medicine, 31(05), 347-352. DOI: 10.1055/s-0030-1248333

Helms, E. R., Storey, A., Cross, M. R., Brown, S. R., Lenetsky, S., Ramsay, H., ... & Zourdos, M. C. (2017). RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. The Journal of Strength & Conditioning Research, 31(2), 292-297. doi: 10.1519/JSC.0000000000001517

Hirsch, S. M., & Frost, D. M. (2019). Considerations for Velocity-Based Training: The Instruction to Move “As Fast As Possible” Is Less Effective Than a Target Velocity. The Journal of Strength & Conditioning Research. doi: 10.1519/JSC.0000000000003233

Hughes, L. J., Banyard, H. G., Dempsey, A. R., Peiffer, J. J., & Scott, B. R. (2019). Using load-velocity relationships to quantify training-induced fatigue. The Journal of Strength & Conditioning Research, 33(3), 762-773. doi: 10.1519/JSC.0000000000003007

Izquierdo, M., González-Badillo, J. J., Häkkinen, K., Ibanez, J., Kraemer, W. J., Altadill, A., ... & Gorostiaga, E. (2006). Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. International journal of sports medicine, 27(09), 718-724. DOI: 10.1055/s-2005-872825

Jidovtseff, B., Harris, N. K., Crielaard, J. M., & Cronin, J. B. (2011). Using the load-velocity relationship for 1RM prediction. The Journal of Strength & Conditioning Research, 25(1), 267-270. doi: 10.1519/JSC.0b013e3181b62c5f

Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity based strength training. J Aust Strength Cond, 22(2), 58-69. [www]

Lake, J., Naworynsky, D., Duncan, F., & Jackson, M. (2017). Comparison of different minimal velocity thresholds to establish deadlift one repetition maximum. Sports, 5(3), 70. https://doi.org/10.3390/sports5030070

Mann, J. B., Ivey, P. A., & Sayers, S. P. (2015). Velocity-based training in football. Strength & Conditioning Journal, 37(6), 52-57. doi: 10.1519/SSC.0000000000000177

Martínez-Cava, A., Morán-Navarro, R., Sánchez-Medina, L., González-Badillo, J. J., & Pallarés, J. G. (2019). Velocity-and power-load relationships in the half, parallel and full back squat. Journal of sports sciences, 37(10), 1088-1096. https://doi.org/10.1080/02640414.2018.1544187

McBurnie, A. J., Allen, K. P., Garry, M., Martin, M., Jones, P. A., Comfort, P., & McMahon, J. J. (2019). The Benefits and Limitations of Predicting One Repetition Maximum Using the Load-Velocity Relationship. Strength & Conditioning Journal, 41(6), 28-40. doi: 10.1519/SSC.0000000000000496

McGrath, G. A., Flanagan, E. P., O’Donovan, P., Collins, D. J., & Kenny, I. C. (2018). Velocity based training: validity of monitoring devices to assess mean concentric velocity in the bench press exercise. J. Austr. Strength Cond, 26, 23-30.

Muñoz-López, M., Marchante, D., Cano-Ruiz, M. A., Chicharro, J. L., & Balsalobre-Fernández, C. (2017). Load-, force-, and power-velocity relationships in the prone pull-up exercise. International Journal of Sports Physiology and Performance, 12(9), 1249-1255. https://doi.org/10.1123/ijspp.2016-0657

Nagata, A., Doma, K., Yamashita, D., Hasegawa, H., & Mori, S. (2018). The Effect of Augmented Feedback Type and Frequency on Velocity-Based Training-Induced Adaptation and Retention. Journal of strength and conditioning research. doi: 10.1519/JSC.0000000000002514

Image from: Suchomel, T. J., Comfort, P., & Lake, J. P. (2017). Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength & Conditioning Journal, 39(1), 10-20. doi: 10.1519/SSC.0000000000000275

Ormsbee, M. J., Carzoli, J. P., Klemp, A., Allman, B. R., Zourdos, M. C., Kim, J. S., & Panton, L. B. (2019). Efficacy of the repetitions in reserve-based rating of perceived exertion for the bench press in experienced and novice benchers. The Journal of Strength & Conditioning Research, 33(2), 337-345. doi: 10.1519/JSC.0000000000001901

Pareja‐Blanco, F., Rodríguez‐Rosell, D., Sánchez‐Medina, L., Sanchis‐Moysi, J., Dorado, C., Mora‐Custodio, R., ... & González‐Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian journal of medicine & science in sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678

Pérez-Castilla, A., García-Ramos, A., Padial, P., Morales-Artacho, A. J., & Feriche, B. (2019). Load-Velocity Relationship in Variations of the Half-Squat Exercise: Influence of Execution Technique. The Journal of Strength & Conditioning Research. DOI: 10.1519/jsc.0000000000002072

Randell, A. D., Cronin, J. B., Keogh, J. W., Gill, N. D., & Pedersen, M. C. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. The Journal of Strength & Conditioning Research, 25(1), 87-93. doi: 10.1519/JSC.0b013e3181fee634

Ruf, L., Chéry, C., & Taylor, K. L. (2018). Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. The Journal of Strength & Conditioning Research, 32(3), 681-689. doi: 10.1519/JSC.0000000000002369

Sanchez-Medina, L., Perez, C. E., & Gonzalez-Badillo, J. J. (2010). Importance of the propulsive phase in strength assessment. International journal of sports medicine, 31(02), 123-129. DOI: 10.1055/s-0029-1242815

Sanchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine & Science in Sports & Exercise, 43(9), 1725-1734. doi: 10.1249/MSS.0b013e318213f880

Sánchez-Medina, L., González-Badillo, J. J., Perez, C. E., & Pallarés, J. G. (2014). Velocity-and power-load relationships of the bench pull vs. bench press exercises. International journal of sports medicine, 35(03), 209-216. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0033-1351252

Sánchez-Medina, L., Pallarés, J. G., Pérez, C. E., Morán-Navarro, R., & González-Badillo, J. J. (2017). Estimation of relative load from bar velocity in the full back squat exercise. Sports Medicine International Open, 1(02), E80-E88. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0043-102933

Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training monitoring for resistance exercise: theory and applications. Sports Medicine, 46(5), 687-698. https://doi.org/10.1007/s40279-015-0454-0

Image from Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training monitoring for resistance exercise: theory and applications. Sports Medicine, 46(5), 687-698. https://doi.org/10.1007/s40279-015-0454-0

Suchomel, T. J., Comfort, P., & Lake, J. P. (2017). Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength & Conditioning Journal, 39(1), 10-20. doi: 10.1519/SSC.0000000000000275

Thompson, S. W., Rogerson, D., Dorrell, H. F., Ruddock, A., & Barnes, A. (2020). The Reliability and Validity of Current Technologies for Measuring Barbell Velocity in the Free-Weight Back Squat and Power Clean. Sports, 8(7), 94. https://doi.org/10.3390/sports8070094

Torrejón, A., Balsalobre-Fernández, C., Haff, G. G., & García-Ramos, A. (2019). The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports biomechanics, 18(3), 245-255. https://doi.org/10.1080/14763141.2018.1433872

Varela-Olalla, D., del Campo-Vecino, J., Leyton-Román, M., Pérez-Castilla, A., & Balsalobre-Fernández, C. (2019). Rating of perceived exertion and velocity loss as variables for controlling the level of effort in the bench press exercise. Sports biomechanics, 1-15. https://doi.org/10.1080/14763141.2018.1433872

Weakley, J. J., Wilson, K. M., Till, K., Read, D. B., Darrall-Jones, J., Roe, G. A., ... & Jones, B. (2019). Visual Feedback Attenuates Mean Concentric Barbell Velocity Loss and Improves Motivation, Competitiveness, and Perceived Workload in Male Adolescent Athletes. The Journal of Strength & Conditioning Research, 33(9), 2420-2425. doi: 10.1519/JSC.0000000000002133

Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., ... & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. Journal of Sports Sciences, 38(5), 477-485. https://doi.org/10.1080/02640414.2019.1706831

Further Resources

McDonald, R. (2018) An Applied Approach to using the Force-Velocity Curve in Beach Volleyball https://www.trainwithpush.com/blog/an-applied-approach-to-using-the-force-velocity-curve-in-beach-volleyball

McGuigan, M. (2019). Testing and Evaluation of Strength and Power. Routledge. (p46-49)

Walker, O. (2018) Velocity-Based Training https://www.scienceforsport.com/velocity-based-training/