Velocity-Based Training

Velocity-Based Training is the use of equipment such as a Linear Position Transducer to measure the speed at which an exercise is completed. This can be used to test or monitor training in a number of ways.

Jovanović, & Flanagan (2014) outlined five practical uses of VBT as follows:

  • Comparing individuals using load/velocity profile and monitoring changes over time
  • Estimating 1RM from sub-maximal loads (see McBurnie et al, 2019; Jidovtseff et al, 2011)
  • Estimating daily readiness or daily 1RM
  • Using velocity monitoring and exertion/velocity profile to control fatigue and exertion (see "velocity stops" below; see Hughes et al, 2018)
  • Using velocity to prescribe exercise load (see Banyard et al, 2019; Dorrell et al, 2020)

This page contains a list of research and resources related to the use of VBT in Strength & Conditioning Practice.

Key Research

  • Instant feedback can improve performance (Weakley et al, 2019; Nagata et al, 2018; Randall et al, 2011)
  • Velocity "stops" can be used to terminate the set when velocity drops below 20% of the targeted velocity zone (see Dorrell et al, 2020; Pareja‐Blanco et al, 2017)
  • Load-velocity relationships vary between genders (Torrejón et al, 2019)
  • The load-velocity relationship is a particularly robust relationship in the bench press (Balsalobre-Fernández et al, 2018; González-Badillo, & Sánchez-Medina, 2010; Bosquet et al, 2010; Torrejón et al, 2019)
  • There is a strong relationship between load and velocity in the pull-up (Muñoz-López et al, 2017)
  • The load-velocity relationship is not as clear in the back squat (Askow et al, 2019; Banyard et al, 2017; Carroll et al, 2017; Hughes et al, 2018; Martínez-Cava et al, 2019; Sánchez-Medina et al, 2017)
  • The load-velocity relationship in the deadlift is also less clear (Lake et al, 2017; Ruf et al, 2018).
  • Use of load-velocity relationships in the deadlift may produce predicted 1RMs that are less than the actual 1RM (Lake et al, 2017)
  • The minimal velocity threshold is the term often used for the mean velocity at 1RM (Jovanović, & Flanagan, 2014; Lake et al, 2017)
  • The minimal velocity threshold will vary across exercises (Helms et al, 2017; see this table from scienceforsport's VBT page)
    • 0.23 m/s back squat; 0.10 m/s touch/pause/go bench press; 0.15 m/s deadlift (Helms et al, 2017)
    • 0.14 m/s touch & go bench press (Ormsbee et al, 2019)
    • 0.15 m/s bench press (Sanchez-Medina et al, 2010)
    • 0.30 m/s back squat (Izquierdo et al 2006)
  • Two-point load assessments have been shown to be valid and reliable for predicting 1RM (García-Ramos, Haff et al, 2018; García-Ramos, Pérez-Castilla, & Jaric, 2018)

Recommended Reading

Appleby, B. B., Banyard, H., Cormie, P., Cormack, S. J., & Newton, R. U. (2018). Validity and Reliability of Methods to Determine Barbell Displacement in Heavy Back Squats: Implications for Velocity-Based Training. Journal of strength and conditioning research. doi: 10.1519/JSC.0000000000002803

Askow, A. T., Merrigan, J. J., Neddo, J. M., Oliver, J. M., Stone, J. D., Jagim, A. R., & Jones, M. T. (2019). Effect of strength on velocity and power during back squat exercise in resistance-trained men and women. The Journal of Strength & Conditioning Research, 33(1), 1-7. doi: 10.1519/JSC.0000000000002968

Balsalobre-Fernández, C., Marchante, D., Muñoz-López, M., & Jiménez, S. L. (2018). Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. Journal of sports sciences, 36(1), 64-70. https://doi.org/10.1080/02640414.2017.1280610

Balsalobre-Fernández, C., Cardiel-García, M., & Jiménez, S. L. (2019). Bilateral and unilateral load-velocity profiling in a machine-based, single-joint, lower body exercise. PloS one, 14(9). https://doi.org/10.1371/journal.pone.0222632

Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and validity of the load–velocity relationship to predict the 1RM back squat. The Journal of Strength & Conditioning Research, 31(7), 1897-1904. doi: 10.1519/JSC.0000000000001657

Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the effects of velocity-based training methods and traditional 1RM-percent-based training prescription on acute kinetic and kinematic variables. International journal of sports physiology and performance, 14(2), 246-255. https://doi.org/10.1123/ijspp.2018-0147

Behm, D. G., & Sale, D. G. (1993). Intended rather than actual movement velocity determines velocity-specific training response. Journal of Applied Physiology, 74(1), 359-368. https://doi.org/10.1152/jappl.1993.74.1.359

Bosquet, L., Porta-Benache, J., & Blais, J. (2010). Validity of a commercial linear encoder to estimate bench press 1 RM from the force-velocity relationship. Journal of sports science & medicine, 9(3), 459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761713/

Carroll, K. M., Sato, K., Bazyler, C. D., Triplett, N. T., & Stone, M. H. (2017). Increases in variation of barbell kinematics are observed with increasing intensity in a graded back squat test. Sports, 5(3), 51. https://doi.org/10.3390/sports5030051

Cormie, P., McGuigan, M. R., & Newton, R. U. (2011). Developing Maximal Neuromuscular Power: Part II Training considerations for improving maximal power production. Sports Med, 41(2), 125-146. [full text]

Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. The Journal of Strength & Conditioning Research, 34(1), 46-53. doi: 10.1519/JSC.0000000000003089

Fahs, C. A., Blumkaitis, J. C., & Rossow, L. M. (2019). Factors related to average concentric velocity of four barbell exercises at various loads. The Journal of Strength & Conditioning Research, 33(3), 597-605. doi: 10.1519/JSC.0000000000003043

Fahs, C. A., Rossow, L. M., & Zourdos, M. C. (2018). Analysis of factors related to back squat concentric velocity. The Journal of Strength & Conditioning Research, 32(9), 2435-2441. doi: 10.1519/JSC.0000000000002295

García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Haff, G. G. (2018). Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability?. The Journal of Strength & Conditioning Research, 32(5), 1273-1279. doi: 10.1519/JSC.0000000000001998

García-Ramos, A., Jaric, S., Padial, P., & Feriche, B. (2016). Force–velocity relationship of upper body muscles: traditional versus ballistic bench press. Journal of applied biomechanics, 32(2), 178-185.

García-Ramos, A., Haff, G. G., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., Balsalobre-Fernández, C., & Jaric, S. (2018). Feasibility of the 2-point method for determining the 1-repetition maximum in the bench press exercise. International Journal of Sports Physiology and Performance, 13(4), 474-481. https://doi.org/10.1123/ijspp.2017-0374

García-Ramos, A., Pérez-Castilla, A., & Jaric, S. (2018). Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps. Sports biomechanics, 1-16. https://doi.org/10.1080/14763141.2018.1545044

González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. International journal of sports medicine, 31(05), 347-352. DOI: 10.1055/s-0030-1248333

Helms, E. R., Storey, A., Cross, M. R., Brown, S. R., Lenetsky, S., Ramsay, H., ... & Zourdos, M. C. (2017). RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. The Journal of Strength & Conditioning Research, 31(2), 292-297. doi: 10.1519/JSC.0000000000001517

Hirsch, S. M., & Frost, D. M. (2019). Considerations for Velocity-Based Training: The Instruction to Move “As Fast As Possible” Is Less Effective Than a Target Velocity. The Journal of Strength & Conditioning Research. doi: 10.1519/JSC.0000000000003233

Hughes, L. J., Banyard, H. G., Dempsey, A. R., Peiffer, J. J., & Scott, B. R. (2019). Using load-velocity relationships to quantify training-induced fatigue. The Journal of Strength & Conditioning Research, 33(3), 762-773. doi: 10.1519/JSC.0000000000003007

Izquierdo, M., González-Badillo, J. J., Häkkinen, K., Ibanez, J., Kraemer, W. J., Altadill, A., ... & Gorostiaga, E. (2006). Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. International journal of sports medicine, 27(09), 718-724. DOI: 10.1055/s-2005-872825

Jidovtseff, B., Harris, N. K., Crielaard, J. M., & Cronin, J. B. (2011). Using the load-velocity relationship for 1RM prediction. The Journal of Strength & Conditioning Research, 25(1), 267-270. doi: 10.1519/JSC.0b013e3181b62c5f

Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity based strength training. J Aust Strength Cond, 22(2), 58-69. [www]

Lake, J., Naworynsky, D., Duncan, F., & Jackson, M. (2017). Comparison of different minimal velocity thresholds to establish deadlift one repetition maximum. Sports, 5(3), 70. https://doi.org/10.3390/sports5030070

Mann, J. B., Ivey, P. A., & Sayers, S. P. (2015). Velocity-based training in football. Strength & Conditioning Journal, 37(6), 52-57. doi: 10.1519/SSC.0000000000000177

Martínez-Cava, A., Morán-Navarro, R., Sánchez-Medina, L., González-Badillo, J. J., & Pallarés, J. G. (2019). Velocity-and power-load relationships in the half, parallel and full back squat. Journal of sports sciences, 37(10), 1088-1096. https://doi.org/10.1080/02640414.2018.1544187

McBurnie, A. J., Allen, K. P., Garry, M., Martin, M., Jones, P. A., Comfort, P., & McMahon, J. J. (2019). The Benefits and Limitations of Predicting One Repetition Maximum Using the Load-Velocity Relationship. Strength & Conditioning Journal, 41(6), 28-40. doi: 10.1519/SSC.0000000000000496

McGrath, G. A., Flanagan, E. P., O’Donovan, P., Collins, D. J., & Kenny, I. C. (2018). Velocity based training: validity of monitoring devices to assess mean concentric velocity in the bench press exercise. J. Austr. Strength Cond, 26, 23-30.

Muñoz-López, M., Marchante, D., Cano-Ruiz, M. A., Chicharro, J. L., & Balsalobre-Fernández, C. (2017). Load-, force-, and power-velocity relationships in the prone pull-up exercise. International Journal of Sports Physiology and Performance, 12(9), 1249-1255. https://doi.org/10.1123/ijspp.2016-0657

Nagata, A., Doma, K., Yamashita, D., Hasegawa, H., & Mori, S. (2018). The Effect of Augmented Feedback Type and Frequency on Velocity-Based Training-Induced Adaptation and Retention. Journal of strength and conditioning research. doi: 10.1519/JSC.0000000000002514

Image from: Suchomel, T. J., Comfort, P., & Lake, J. P. (2017). Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength & Conditioning Journal, 39(1), 10-20. doi: 10.1519/SSC.0000000000000275

Ormsbee, M. J., Carzoli, J. P., Klemp, A., Allman, B. R., Zourdos, M. C., Kim, J. S., & Panton, L. B. (2019). Efficacy of the repetitions in reserve-based rating of perceived exertion for the bench press in experienced and novice benchers. The Journal of Strength & Conditioning Research, 33(2), 337-345. doi: 10.1519/JSC.0000000000001901

Pareja‐Blanco, F., Rodríguez‐Rosell, D., Sánchez‐Medina, L., Sanchis‐Moysi, J., Dorado, C., Mora‐Custodio, R., ... & González‐Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian journal of medicine & science in sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678

Pérez-Castilla, A., García-Ramos, A., Padial, P., Morales-Artacho, A. J., & Feriche, B. (2019). Load-Velocity Relationship in Variations of the Half-Squat Exercise: Influence of Execution Technique. The Journal of Strength & Conditioning Research. DOI: 10.1519/jsc.0000000000002072

Randell, A. D., Cronin, J. B., Keogh, J. W., Gill, N. D., & Pedersen, M. C. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. The Journal of Strength & Conditioning Research, 25(1), 87-93. doi: 10.1519/JSC.0b013e3181fee634

Ruf, L., Chéry, C., & Taylor, K. L. (2018). Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. The Journal of Strength & Conditioning Research, 32(3), 681-689. doi: 10.1519/JSC.0000000000002369

Sanchez-Medina, L., Perez, C. E., & Gonzalez-Badillo, J. J. (2010). Importance of the propulsive phase in strength assessment. International journal of sports medicine, 31(02), 123-129. DOI: 10.1055/s-0029-1242815

Sanchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine & Science in Sports & Exercise, 43(9), 1725-1734. doi: 10.1249/MSS.0b013e318213f880

Sánchez-Medina, L., González-Badillo, J. J., Perez, C. E., & Pallarés, J. G. (2014). Velocity-and power-load relationships of the bench pull vs. bench press exercises. International journal of sports medicine, 35(03), 209-216. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0033-1351252

Sánchez-Medina, L., Pallarés, J. G., Pérez, C. E., Morán-Navarro, R., & González-Badillo, J. J. (2017). Estimation of relative load from bar velocity in the full back squat exercise. Sports Medicine International Open, 1(02), E80-E88. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0043-102933

Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training monitoring for resistance exercise: theory and applications. Sports Medicine, 46(5), 687-698. https://doi.org/10.1007/s40279-015-0454-0

Suchomel, T. J., Comfort, P., & Lake, J. P. (2017). Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength & Conditioning Journal, 39(1), 10-20. doi: 10.1519/SSC.0000000000000275

Torrejón, A., Balsalobre-Fernández, C., Haff, G. G., & García-Ramos, A. (2019). The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports biomechanics, 18(3), 245-255. https://doi.org/10.1080/14763141.2018.1433872

Varela-Olalla, D., del Campo-Vecino, J., Leyton-Román, M., Pérez-Castilla, A., & Balsalobre-Fernández, C. (2019). Rating of perceived exertion and velocity loss as variables for controlling the level of effort in the bench press exercise. Sports biomechanics, 1-15. https://doi.org/10.1080/14763141.2018.1433872

Weakley, J. J., Wilson, K. M., Till, K., Read, D. B., Darrall-Jones, J., Roe, G. A., ... & Jones, B. (2019). Visual Feedback Attenuates Mean Concentric Barbell Velocity Loss and Improves Motivation, Competitiveness, and Perceived Workload in Male Adolescent Athletes. The Journal of Strength & Conditioning Research, 33(9), 2420-2425. doi: 10.1519/JSC.0000000000002133

Image from Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training monitoring for resistance exercise: theory and applications. Sports Medicine, 46(5), 687-698. https://doi.org/10.1007/s40279-015-0454-0

Further Resources

McDonald, R. (2018) An Applied Approach to using the Force-Velocity Curve in Beach Volleyball https://www.trainwithpush.com/blog/an-applied-approach-to-using-the-force-velocity-curve-in-beach-volleyball

McGuigan, M. (2019). Testing and Evaluation of Strength and Power. Routledge. (p46-49)

Walker, O. (2018) Velocity-Based Training https://www.scienceforsport.com/velocity-based-training/